showed a single ninhydrin-positive spot. A small portion of the aqueous phase was evaporated and subjected to standard derivatization procedures ${ }^{17}$ to give the trifluoroacetyl n-butyl esters of any amino acids present. Analysis by GC/MS indicated the presence of N-(trifluoroacetyl) valine n-butyl ester (2). TLC analysis of the underivatized hydrolyzate on Chiralplates (Ma-cherey-Nagel) and comparison with authentic standards indicated that the valine obtained from hydrolysis of brassicicolin A was racemic.

Basic Hydrolysis of 6. A sample of brassicicolin A (10 mg) was dissolved in 3 mL of methanol to which 10 mg of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added. The mixture was allowed to stir at room temperature for 24 h and was then evaporated, dissolved in 3 mL of water, and extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$). The aqueous phase was collected and evaporated to give a white residue, which was taken on to the next step without further purification.

Acetylation of Basic Hydrolysis Product. The residue obtained after basic hydrolysis as described above was suspended in 3 mL of pyridine to which 0.5 mL of acetic anhydride was added. The mixture was allowed to stir for 18 h and was subsequently evaporated, dissolved in water, and extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford 4.2 mg (67% yield) of hexa-acetyl-D-mannitol (3). The structure and stereochemistry of this product were assigned by comparison to an authentic standard prepared by acetylation of D-mannitol under identical conditions (GC/MS, HRMS, ${ }^{1} \mathrm{H}$ NMR, $[\alpha]_{D}$).

Selective Hydrolysis of the Isocyanide Groups. A small amount (2.0 mg) of brassicicolin A was dissolved in 1 mL of methanol. Three drops of acetic acid were added, and the solution was allowed to stand at room temperature overnight. Evaporation of the solvent and analysis by IR and ${ }^{1} \mathrm{H}$ NMR demonstrated the
(17) Pandey, R. C.; Cook, J. C., Jr.; Rinehart, K. L., Jr. J. Am. Chem. Soc. 1979, 99, 8469-8483.
absence of isocyanide groups (no IR band at $2150 \mathrm{~cm}^{-1}$; no CHNC proton NMR multiplet at 4.05 ppm), and the presence of formamide groups [broad new IR absorption at $1660 \mathrm{~cm}^{-1}$; new ${ }^{1} \mathrm{H}$ NMR signals at 6.30-6.35 (NHCHO), $8.20-8.25$ (NHCHO), and $4.60-4.65 \mathrm{ppm}(\mathrm{CHNHCHO})$].

Reductive Deisocyanation of 6. A sample of brassicicolin A ($38 \mathrm{mg}, 0.056 \mathrm{mmol}$) and a catalytic amount of AIBN (0.1 mg) were dissolved in 15 mL of anhydrous benzene under a nitrogen atmosphere, and 32.6 mg (0.112 mmol) of tri- n-butyltin hydride was added via syringe. ${ }^{8}$ After stirring for 8 h at $80^{\circ} \mathrm{C}$, the solution was cooled, evaporated to dryness, and chromatographed on a small column of silica gel ($1 \times 5 \mathrm{~cm}$) using a stepwise gradient from hexane to ethyl acetate. Fractions collected at 20% ethyl acetate were pooled to give 11 mg (31% isolated yield) of the white crystalline symmetrical reduction product 5 . Compound 5 has the following properties: $R_{f} 0.71$ ($9: 1$ chloroform-methanol); mp $50-51^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+23.0^{\circ}\left(\mathrm{c} 1.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) $3517,2962,2934$, 2875,1743 (br), 1468, 1371, 1293, 1210, 1032, $983 \mathrm{~cm}^{-1}$; EIMS (30 $\mathrm{eV})$ major ions at $m / z 634\left(\mathrm{M}^{+}, 2.1\right), 574(19), 518$ (32), 475 (23), 417 (100), 358 (12), 318 (12), 299 (12), 257 (35), 185 (49), 157 (35), 115 (13), 85 (39), 57 (9.7); FABMS (thioglycerol) major ions at $m / z 635$ ($\mathrm{M}+\mathrm{H}, 7.8 \%$), 617 (5.9), 575 (18), 533 (5.3), 517 (16), 475 (16), 428 (34), 417 (3.4), 333 (3.5), 291 (4.7), 85 (42), 57 (40); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$, see Table I; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}), see Table I; HRFABMS obsd 635.3316, calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{14}+\mathrm{H} 635.3278$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{14}$: C, $56.78 ; \mathrm{H}, 7.94$. Found: $\mathrm{C}, 56.78$; H, 7.65.

Acknowledgment. This work was supported in part by a Northwest area foundation grant from Research Corp. and by an NIH biomedical research support grant administered by the University of Iowa. We wish to thank Dr. D. T. Wicklow of the ARS Culture Collection, USDA Northern Regional Research Laboratory for providing cultures of A. brassicicola.

Conversion of Dehydroabietic Acid into 20-Keto-C-aryl-18-norsteroids. Formation of the D Ring

A. Abad,* C. Agullō, M. Arnó,* L. R. Domingo, and R. J. Zaragozá
Departamento de Quimica Orgânica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjasot, Valencia, Spain

Received January 11, 1988

Dehydroabietic acid (1a) has been converted into 17 -epimeric 20 -keto- C-aryl-18-norsteroids 13 via a sequence of trasformations involving as key step the regioselective functionalization of the 13 -isopropyl group of 1a.

The preparation of ring C aromatic steroids has attracted the attention of many workers due to their interesting pharmacological properties. In recent years several C-aryl-18-norsteroids have been totally synthesized ${ }^{1}$ or prepared from different resin acids ${ }^{2}$ and by conversion of naturally ocurring steroids to the C-aromatic system. ${ }^{3}$

In this paper we describe the elaboration of the fivemembered D ring of a 20 -keto- C-aryl-18-norsteroid from readily available dehydroabietic acid (1a), which with its aromatic ring C and $\mathrm{C}-13$ isopropyl side chain has shown

[^0]to be a suitable starting material for the preparation of 15and 17 -keto- 18 -norsteroids. ${ }^{4 a, b}$ The synthetic route used to prepare this ring C-aromatic steroid system is outlined in Schemes I and II.

The main synthetic problem associated with the use of this resin acid as the starting material for the preparation of C -aromatic steroids is the regioselective functionalization of the $\mathrm{C}-13$ isopropyl group; the use of oxidizing agents such as $\mathrm{CrO}_{3},{ }^{5 \mathrm{a}} \mathrm{KMnO}_{4},{ }^{5 \mathrm{~b}} \mathrm{SeO}_{2},{ }^{5 \mathrm{c}}$ or $\mathrm{NBS}^{5 d}$ results in the oxidation of both activated benzylic positions or in the

[^1]Scheme I^{a}

a (a) DDQ, $\mathrm{C}_{6} \mathrm{H}_{6}$, ref; (b) TTN, $\mathrm{CH}_{3} \mathrm{OH}, 56 \%$ from 1b; (c) KH , THF, then BEt_{3}, then $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}, 83 \%$; (d) $\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{SH}$, BF_{3} etherate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 91 \%$; (e) $\mathrm{NaOH}, \mathrm{EtOH}, 50^{\circ} \mathrm{C}, 97 \%$; (f) polyphosphoric acid, $\mathrm{P}_{2} \mathrm{O}_{5}, 40^{\circ} \mathrm{C}, 67 \%$.

${ }^{a}$ (g) $\mathrm{TsNHNH}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{BF}_{3}$ etherate, 96%; (h) catecholborane, CHCl_{3}, then NaOAc ref, 20%; (j) TTN, $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{THF}, 80 \%$; (k) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{AcOH}, 80 \%$.
preferential oxidation of the C-7 position. We have found that the use of 2,3-dichloro-5,6-dicyanoquinone (DDQ) as the dehydrogenation agent allows the regioselective functionalization of the isopropyl group (Scheme I). Thus, heating a solution of methyl dehydroabietate (1b) and DDQ under reflux in dry benzene gave after workup (see Experimental Section) a mixture, inseparable by column chromatography, of starting material $1 \mathbf{b}(52 \%)$ and methyl abieta-8,11,13,15-tetraen-18-oate (2) (45%) together with
a small amount of methyl abieta-6,8,11,13-tetraen-18-oate (less than 3%) according to GC analysis of the product mixture. ${ }^{6}$ Attempts to improve the yield of olefin 2 by increasing the amount of DDQ used or the reaction time resulted only in substantial material losses. Although the yield of desired alkene 2 is only moderate the fact that unconsumed methyl dehydroabietate $1 \mathbf{b}$ is recovered in the next step (see below) and may be efficiently recycled makes this reaction a useful method for the regioselective functionalization of the C-13 isopropyl group. This group was conveniently modified in readiness for the formation of the D ring in the next step. Thus, treatment of the reaction mixture obtained from exposure of methyl dehydroabietate (1b) to DDQ with thallium(III) nitrate (TT$\mathrm{N})^{7}$ in methanol at room temperature allowed the isolation of methyl ketone 3 after chromatographic separation from unchanged methyl dehydroabietate (1b) in an overall yield (two steps) of 56% based on recovered $1 \mathbf{b}$.
Alkylation of ketone 3 was accomplished by successive treatment of its thermodynamic potassium enolate with triethylborane and methyl bromoacetate. This alkylation via the potassium enoxyborate ${ }^{8}$ proceeded with high regioselectivity and produced neither polyalkylation nor O -alkylation products, in contrast to the alkylation of the free enolate which took place in low yield. Although, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 a seemed to indicate a single diastereomer its diastereomeric nature was shown by the spectroscopic data of protected ketone 5 (vide infra).
Since initial attempts at direct cyclization of keto acid 4b (derived from keto ester 4a by partial hydrolysis with $\mathrm{NaOH}-\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$) were not fruitful ${ }^{9}$ we decided to protect the ketone carbonyl group of 4 a as its ethylene thioketal. Thus, treatment of 4 a with 1,2 -ethanedithiol and boron trifluoride etherate and subsequent chromatography afforded thioketal 5 in high yield. The ${ }^{13} \mathrm{C}$ NMR spectrum of this material comfirmed the presence of both epimers at C-1'; there is one peak for each carbon atom in the proton noise decoupled spectrum with exception of C-12 and C-14 carbon atoms which appear as two doublets of the same intensity at $126.15 / 126.00$ and $129.35 / 129.20$ ppm.

In order to form the D ring by using an intramolecular Friedel-Crafts acylation the diester 5 was converted to the half-ester 6 by partial hydrolysis with alcoholic NaOH . The planned subsequent intramolecular Friedel-Crafts acylation presented some difficulties. We first attempted the cyclization reaction via the corresponding acid chloride (SOCl_{2}, pyridine or AcCl in situ) with $\mathrm{AlCl}_{3}\left(\mathrm{CS}_{2}\right.$ or $\mathrm{C}_{6} \mathrm{H}_{6}$ as solvents), but no cyclized product was obtained from the reaction mixtures. Fortunately, cyclized products 7 and 8 were isolated when the intramolecular acylation was carried out in polyphosphoric acid under carefully controlled conditions, especially with regard to temperature. We believe that the failure to observe any cyclized product in the initially attempted conditions may result from the intolerance of the thioketal moiety to the reaction conditions. It is also of note that about 5% of deprotected cyclized products 9 and 10 were obtained from the poly-

[^2]phosphoric acid cyclization reaction mixture. Integration of the aromatic signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude cyclization mixture revealed a ratio of 1.7:1 of the cyclized products 7 and 8 . Formation of the major product 7 is in agreement with previous observations. ${ }^{10}$ Although 7 and 8 have similar R_{f} values they could be separated by careful flash chromatography in 43% and 24% yields, respectively.
Transformation of the tetracyclic ketone 7 into the target 20 -keto- C-aryl-18-norsteroid 13 required removal of the C-15 carbonyl group and unmasking of the C-17 acetyl function (Scheme II). Toward this end, a solution of 7 in benzene was treated with tosylhydrazine and a catalytic amount of boron trifluoride etherate, which generated an almost quantitative yield of crystalline tosylhydrazone 11. Reduction of 11 with catecholborane under standard conditions ${ }^{11}$ appeared to proceed smoothly when monitored by TLC but a disappointingly low yield (less than 20%) of reduced compound 12 was obtained after workup and chromatography; no other compound was isolated from the crude reaction mixture. The reasons for the low yield obtained in this reaction are not immediately apparent, though the instability of 12 may be partially responsible. ${ }^{12}$ Although compound 12 could have been transformed into 13, the low yield obtained in the reduction step prompted us to investigate an alternative strategy for the conversion of 7 to 13 . Cleavage of the protecting group in 7 (TTN in methanol-tetrahydrofuran) afforded solid diketone 9 in 80% isolated yield. ${ }^{13}$ The aromatic ${ }^{1} \mathrm{H}$ NMR region shows the characteristic AB pattern for the two aromatic protons and it is of note that the corresponding signals for the methyl hydrogens of the COCH_{3} groups of both epimers of 9 at C-17 appear as two singlets of similar intensity at well-differentiated δ (2.22 and 2.17 ppm).

Finally, hydrogenolysis of diketone 9 over $\mathrm{Pd}-\mathrm{C}$ or PtO_{2} in acetic acid gave the 17 -epimeric mixture 13. Partial reduction of the C-17 acetyl group took place during the hydrogenolysis reaction, but treatment of the crude reaction mixture with Jones reagent gave, after workup and chromatography, a $1: 1$ mixture of $17 \alpha \mathrm{H}$ and $17 \beta \mathrm{H} 13$, the separation of which was achieved by preparative highpressure liquid cromatography (HPLC). The stereochemistry at C-17 of compounds 13 a and 13 b was established by comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of both isomers with those of analogous structures. ${ }^{3,14}$ In particular, the acetyl protons of the $17 \alpha \mathrm{H}$ isomer 13a resonate at a slightly lower field than those of the $17 \beta \mathrm{H}$ isomer 13 b (2.17 and 2.14 ppm , respectively). Although the ${ }^{13} \mathrm{C}$ NMR spectra of both isomers are essentially identical, they differ significantly in the shielding of $\mathrm{C}-21$; this carbon resonates at 0.22 ppm upfield in the $17 \beta \mathrm{H}$ isomer 13 b compared with the $17 \alpha \mathrm{H}$ isomer 13 a (27.58 and 27.80 ppm , respectively).

[^3]This shielding of $\mathrm{C}-21$ in the $17 \beta \mathrm{H}$ isomers has been attributed ${ }^{14}$ to a higher degree of γ-gauche interaction with $\mathrm{C}-16$. The coupling constants of the 17 H protons with the $16 \alpha \mathrm{H}$ and $16 \beta \mathrm{H}$ protons in both isomers $\left(J_{17 \alpha, 16 \alpha}=5.9 \mathrm{~Hz}\right.$ and $J_{17 \alpha, 16 \beta}=7.9 \mathrm{~Hz}$ for 13 a and $J_{17 \beta, 16 \alpha}=J_{17 \beta, 16 \beta}=7 \mathrm{~Hz}$ for 13 b are in reasonable agreement with a five-membered D ring as a C-16 β-envelope. ${ }^{15}$ This conformation also accounts for the difference in the NMR shift of the 12 H protons induced by tris(2,2-dimethyl-6,6,7,7,8,8,8-hepta-fluoro-3,5-octadionato)europiium(III) $\left[\mathrm{Eu}(\mathrm{fod})_{3}\right]$. When 1 equiv or more of the shift reagent was added, the signals due to each aromatic proton were clearly resolved as two doublets, but while the shift reagent causes the same deshielding in the 11 H protons of both isomers, the deshielding in the 12 H protons is greater for the $17 \alpha \mathrm{H}$ isomer 13 a than for the $17 \beta \mathrm{H}$ isomer 13 b , indicating a shorter $\mathrm{C}-20$ oxygen to 12 H proton distance for 13 a than for 13 b as is shown by Drieding models of both isomers.

Experimental Section

Melting points were determined on a Kofler apparatus and are uncorrected. IR spectra were recorded as liquid films for oils and in KBr disks for solids in a Perkin-Elmer Model 281 spectrophotometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured at 200.13 and 50.32 MHz , respectively (Bruker AC-200 model) in CDCl_{3} solution (room temperature); chemical shifts are reported in $\mathrm{ppm}(\delta)$ relative to $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. The carbon type (methine, methylene, methyl, or quaternary) was determined by DEPT experiments. Mass spectra were run by electron impact (70 eV) on a Varian MAT-311A spectrometer. Elemental analyses were performed by Servicio de Semimicroanalisis del CSIC (Barcelona). Optical rotations were measured with a Perkin-Elmer 141 polarimeter. Gas chromatography was carried out on a Perkin-Elmer Model 3920B, using helium as carrier gas and a Minigrator to integrate peak areas. Thin-layer chromatography was carried out on Merk 0.25 mm silica gel $60 \mathrm{HF}_{254}$ analytical aluminium plates. Column chromatography separations were performed on silica gel (Merk silica gel 60, 230-400 mesh).

Commercially available chemicals were used as obtained without further purification, except for solvents, which were purified and dried before use by standard methods. Dehydroabietic acid (1a) was obtained from commercial colophony following the procedure of Halbrook. ${ }^{16}$ Its methyl ester (1b) was prepared by reaction of its lithium salt with dimethyl sulfate in DMF. ${ }^{17}$
Reaction of Methyl Dehydroabietate (1b) with DDQ. A solution of $1 \mathrm{~b}(10.0 \mathrm{~g}, 31.84 \mathrm{mmol})$ and $\mathrm{DDQ}(8.0 \mathrm{~g}, 35.24 \mathrm{mmol}$, 1.1 equiv) in dry benzene (700 mL) was heated under reflux with stirring for 2.5 h . The reaction mixture was cooled to room temperature and was filtered to recover the 2,3 -dichloro- 5,6 -dicyanohydroquinone formed $(5.70 \mathrm{~g})$. Concentration of the filtrate gave an oily residue, which was dissolved in hexane, filtered, and then concentrated. The residue was chromatographed on a short silica gel column with hexane-ether (9:1) as eluent to give a nearly colorless oil ($7.90 \mathrm{~g}, 79 \%$). GC analysis ($1 / 8$ - in . diameter, $2-\mathrm{m}$ column packed with 5% EGA on Chromosorb W AW; $250^{\circ} \mathrm{C}$ injector and detector temperature, $210^{\circ} \mathrm{C}$ column temperature; flow rate, $35 \mathrm{~mL} / \mathrm{min}$) indicated that this contained two major components with retention times of 13.4 and 15.2 min , corresponding to unreacted methyl dehydroabietate (1b) (52%) and methyl abieta-8,11,13,15-tetraen-18-oate (2) (45\%) together with a small amount (2%) of a third component (retention time 24 min) corresponding to methyl abieta-6,8,11,13-tetraen-18-oate.
Methyl 13-(2'-Oxopropyl)podocarpa-8,11,13-trien-18-oate (3). To a solution of the mixture of 1 b and $2(6.20 \mathrm{~g}$, containing 2.79 g of $2,8.94 \mathrm{mmol}$) in $\mathrm{MeOH}(114 \mathrm{~mL})$ was added $\mathrm{Tl}(\mathrm{ON}-$

[^4]$\left.\mathrm{O}_{2}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(3.98 \mathrm{~g}, 8.96 \mathrm{mmol})$ with stirring at room temperature. After 30 min , water was added, and the crystals were filtered off. The filtrate was extracted with ether, which was washed with saturated NaHCO_{3} solution and brine. After drying over sodium sulfate, the solvent was removed under reduced pressure to afford the crude product, which was purified by column chromatography on silica gel to give unreacted $\mathbf{1 b}$ (3.1 g , hexane-ether ($9: 1$) as eluent) and 3 ($2.9 \mathrm{~g}, 99 \%$ based on 2, hexane-ether (7:3) as eluent) as an oil: $[\alpha]^{22}{ }_{\mathrm{D}}+46.9^{\circ}$ (c 0.75, CHCl_{3}); IR 1710-1730 (ester and ketone), $1610,1500 \mathrm{~cm}^{-1}$ (Ar ring); ${ }^{1} \mathrm{H}$ NMR $\delta 7.20$ (d, $J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 6.95 (dd, $J=8.1$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 6.87 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-14), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CO}\right), 2.88$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7 \alpha, \beta$), 2.27 (m, $1 \mathrm{H}, \mathrm{H}-1 \beta$), 2.22 (dd, $J=12.5$ and 2.0 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5 \alpha$), 2.15 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), 1.27 and 1.20 (each s, 3 H , $2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\delta 206.67(\mathrm{C}), 178.96(\mathrm{C}), 148.29(\mathrm{C}), 135.40$ $(\mathrm{C}), 131.11(\mathrm{C}), 129.86(\mathrm{CH}), 126.73(\mathrm{CH}) 124.63(\mathrm{CH}), 51.86\left(\mathrm{CH}_{3}\right)$, $50.48\left(\mathrm{CH}_{2}\right), 47.57(\mathrm{C}), 44.72(\mathrm{CH}), 37.89\left(\mathrm{CH}_{2}\right), 37.00\left(\mathrm{CH}_{2}\right), 36.60$ (C), $29.76\left(\mathrm{CH}_{2}\right), 29.22\left(\mathrm{CH}_{3}\right), 24.99\left(\mathrm{CH}_{3}\right), 21.50\left(\mathrm{CH}_{2}\right), 18.48$ $\left(\mathrm{CH}_{2}\right)$, and $16.45\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}, m / e$ (relative intensity) $328\left(\mathrm{M}^{+}\right.$, 13.1), 313 (15.5), 285 (4.8), 254 (19.5), 253 (100), and 225 (12.6); HRMS, calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} 328.2038$, found, 328.2057.

Methyl 13-[1'-((Methoxycarbonyl)methyl)-2'-oxo-propyl]podocarpa-8,11,13-trien-18-oate (4a). To a stirred suspension of prewashed potassium hydride (0.679 g of a 30.7% mineral oil dispersion of $\mathrm{KH}, 5.197 \mathrm{mmol}$) in freshly distilled THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added, dropwise via syringe, ketone 3 ($1.623 \mathrm{~g}, 4.948 \mathrm{mmol}$) in THF (5 mL). After hydrogen evolution had ceased (ca. 1 h at $0^{\circ} \mathrm{C}$) the orange mixture was stirred at room temperature for a further 30 min , at which time $6.4 \mathrm{~mL}(6.4 \mathrm{mmol})$ of a 1 M solution of triethylborane in THF was added to the mixture. After 10 min methyl bromoacetate ($2.5 \mathrm{~mL}, 24.75 \mathrm{mmol}, 5$ equiv) was added in one portion. A white precipitate appeared and the pale yellow heterogeneous mixture was stirred for 12 h at room temperature. The reaction was quenched with saturated aqueous ammonium chloride solution until no more effervescence could be detected. Water was added and the aqueous layer extracted with ether. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under reduced pressure followed by chromatography of the residue (gradient elution, 20% to 40% hex-ane-ether) gave recovered methyl bromoacetate (2.7 g), unreacted 3 (0.249 g), and an inseparable $1: 1$ mixture (see Discussion section) of the C-1' epimers of 4 a ($1.35 \mathrm{~g}, 83 \%$ based on consumed 3): IR 1730 (ester), 1715 (ketone), $1612,1500 \mathrm{~cm}^{-1}$ (Ar ring); ${ }^{1} \mathrm{H}$ NMR $\delta 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12)$, 6.79 (br s, $1 \mathrm{H}, \mathrm{H}-14$), 4.06 (dd, $J=10.05$ and $4.6 \mathrm{~Hz}, 1 \mathrm{H}$, ArCHCO), $3.59,3.61$ (each s, $3 \mathrm{H}, 2 \times \mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.12 (dd, $J=$ 17.0 and $10.05 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), $2.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \alpha, \beta), 2.42$ (dd, $J=17.0$ and $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}, 2.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1 \beta), 2.13$ (dd, $J=12.7$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \alpha), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.22$ and 1.14 (each $\mathrm{s}, 3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$) [irradiation at $\delta 4.06$ collapsed the doublets of doublets at $\delta 3.12$ and 2.42 to doublets $(J=17 \mathrm{~Hz})$]; ${ }^{13} \mathrm{C}$ NMR $\delta 206.85$ (C), 178.76 (C), 172.48 (C), 148.89 (C), 135.71 (C), $134.09(\mathrm{C}), 128.47(\mathrm{CH}), 125.39(\mathrm{CH}), 124.90(\mathrm{CH}), 54.12(\mathrm{CH})$, $51.78\left(\mathrm{CH}_{3}\right), 51.55\left(\mathrm{CH}_{3}\right), 47.45(\mathrm{C}), 44.60(\mathrm{CH}), 37.76\left(\mathrm{CH}_{2}\right) 36.94$ (C), $36.55\left(\mathrm{CH}_{2}\right), 36.50\left(\mathrm{CH}_{2}\right), 29.68\left(\mathrm{CH}_{2}\right), 28.78\left(\mathrm{CH}_{3}\right), 24.87$ $\left(\mathrm{CH}_{3}\right), 21.36\left(\mathrm{CH}_{2}\right), 18.36\left(\mathrm{CH}_{2}\right)$, and $16.36\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}, \mathrm{m} / e$ (relative intensity) 401 (3.5), $400\left(\mathrm{M}^{+}, 12.9\right), 385$ (1.2), 357 (29.8), 325 (5.5), 316 (12.1), 315 (56.3), 297 (3.2), and 43 (100); HRMS, calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} 400.2250$, found 400.2261 .

Methyl 13-[1'-((Methoxycarbonyl)methyl)- $2^{\prime}, 2^{\prime}$-(ethyl-enedithio)propyl]podocarpa-8,11,13-trien-18-oate (5). To a stirred solution of ketone $4 \mathrm{a}(0.948 \mathrm{~g}, 2.370 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (29 mL) at room temperature under argon was added, via syringe, 1,2-ethanedithiol ($0.500 \mathrm{~mL}, 5.95 \mathrm{mmol}, 2.5$ equiv) followed by ethereal boron trifluoride etherate $(0.192 \mathrm{~mL})$. The mixture was stirred at room temperture for 24 h and then hydrolyzed with 12.5 mL of 5% aqueous NaOH . The organic layer was separated, and the aqueous layer was extracted with dichloromethane. The combined organic layers were washed with $5 \% \mathrm{NaOH}$ solution and brine. After drying and concentration the residue was chromatographed on silica gel (hexane-ether, 8:2) to give 5 (1.026 $\mathrm{g}, 91 \%$) as a solid: $\mathrm{mp} 128-131^{\circ} \mathrm{C}$ (from ethanol); IR 1730 (ester), $1500 \mathrm{~cm}^{-1}$ (Ar ring); ${ }^{1} \mathrm{H}$ NMR $\delta 6.9-7.1$ (m, 3 H , Ar protons), 3.64 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.52 (s overlapped with dd, $4 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$ and $\mathrm{H}-1^{\prime}$), 3.4-3.2 (dd overlapped with $\mathrm{m}, 5 \mathrm{H}, \mathrm{CHCO}_{2}$ and $2 \times \mathrm{SCH}_{2}$),
2.93 (dd, $J=9.8$ and $15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.85 (m partially overlapped with dd at $2.93,2 \mathrm{H}, \mathrm{H}-7 \alpha, \beta), 1.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CS}_{2}\right)$, 1.25 and 1.15 (each s, $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\delta 178.72$ (C), 172.60 (C), $148.10(\mathrm{C}), 137.11$ (C), $134.12(\mathrm{C}), 129.35$ and $129.20(\mathrm{CH})$, 126.15 and $126.00(\mathrm{CH}), 123.52(\mathrm{CH}), 70.91(\mathrm{C}), 52.12(\mathrm{CH}), 51.65$ $\left(\mathrm{CH}_{3}\right), 51.26\left(\mathrm{CH}_{3}\right), 47.40(\mathrm{C}), 44.60(\mathrm{CH}), 40.35\left(\mathrm{CH}_{2}\right), 39.58\left(\mathrm{CH}_{2}\right)$, $38.21\left(\mathrm{CH}_{2}\right), 37.68\left(\mathrm{CH}_{2}\right), 36.78(\mathrm{C}), 36.43\left(\mathrm{CH}_{2}\right), 33.29\left(\mathrm{CH}_{3}\right), 29.74$ $\left(\mathrm{CH}_{2}\right), 24.84\left(\mathrm{CH}_{3}\right), 21.42\left(\mathrm{CH}_{2}\right), 18.34\left(\mathrm{CH}_{2}\right)$, and $16.30\left(\mathrm{CH}_{3}\right)$; MS, m / e (relative intensity) $476\left(0.45, \mathrm{M}^{+}\right), 445(0.4), 357(0.2)$, and 119 (100). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 65.51; H, 7.61. Found: C, 65.21; H, 8.01.

Methyl 13-[1'-(Carboxymethyl)-2',2'-(ethylenedithio)-propyl]podocarpa-8,11,13-trien-18-oate (6). To a suspension of diester $5(1.024 \mathrm{~g}, 2.151 \mathrm{mmol})$ in ethanol (20 mL) was added 2% alcoholic NaOH ($26 \mathrm{~mL}, 13.0 \mathrm{mmol}, 6$ equiv) and the mixture stirred for 3 h at $50^{\circ} \mathrm{C}$. The reaction mixture was cooled to room temperature, water was added, and the mixture was acidified with 2 N HCl and extracted with ether. The extract was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave pure 6 ($0.961 \mathrm{~g}, 97 \%$) as a solid: $\mathrm{mp} 87-89^{\circ} \mathrm{C}$; IR $3660-2300$ (acid), $1740-1710$ (ester and acid), $1500 \mathrm{~cm}^{-1}$ (Ar ring); ${ }^{1} \mathrm{H}$ NMR $\delta 6.9-7.1$ (m, 3 H , Ar protons), 3.63 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.47 (dd, $J=9.55$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.36-3.15 (dd partially overlapped with $\mathrm{m}, 5 \mathrm{H}, \mathrm{CHCO}_{2}$ and $2 \times \mathrm{SCH}_{2}$), $2.93(\mathrm{dd}, J=16.5$ and 9.55 Hz $1 \mathrm{H}, \mathrm{CHCO}_{2}$), $2.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \alpha, \beta), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CS}_{2}\right), 1.24$ and 1.15 (each s, $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\delta 179.07$ (C), 178.30 $(\mathrm{C}), 148.40(\mathrm{C}), 137.03(\mathrm{C}), 134.40(\mathrm{C}), 129.49$ and $129.25(\mathrm{CH})$, 126.42 and $126.15(\mathrm{CH}), 123.78(\mathrm{CH}), 71.14(\mathrm{C}), 51.87\left(\mathrm{CH}+\mathrm{CH}_{3}\right)$ $47.61(\mathrm{C}), 44.72(\mathrm{CH}), 40.49\left(\mathrm{CH}_{2}\right), 39.77\left(\mathrm{CH}_{2}\right), 38.33\left(\mathrm{CH}_{2}\right), 37.80$ $\left(\mathrm{CH}_{2}\right), 36.97(\mathrm{C}), 36.55\left(\mathrm{CH}_{2}\right), 33.46\left(\mathrm{CH}_{3}\right), 29.91\left(\mathrm{CH}_{2}\right), 25.01$ $\left(\mathrm{CH}_{3}\right), 21.56\left(\mathrm{CH}_{2}\right), 18.49\left(\mathrm{CH}_{2}\right)$, and $16.45\left(\mathrm{CH}_{3}\right)$.

Cyclization Reaction of 5b. 4α-Carbomethoxy-20,20-(ethylenedithio)-4 β-methyl-18-nor- $\alpha \alpha$-pregna-8,11,13-trien-15-one (7) and Isomer 8. An intimate mixture of powdered half ester $6(0.300 \mathrm{~g}, 0.649 \mathrm{mmol})$, polyphosphoric acid (8.0 g), and $\mathrm{P}_{2} \mathrm{O}_{5}(0.800 \mathrm{~g})$ was mechanically stirred at $40^{\circ} \mathrm{C}$ for 7 h . After cooling, the brown-orange reaction mixture was quickly poured into 150 mL of an ice-cold aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with ether. The extract was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and brine and was filtered through a pad of basic alumina. Evaporation of the ether gave a crude mixture of cyclized products 7 and 8 in a ratio 1.7:1 (${ }^{1} \mathrm{H}$ NMR analysis) as a semisolid $(0.273 \mathrm{~g})$. The two isomers were separated by careful flash chromatography with hexane-ether ($8: 2$) as eluent

7: $0.125 \mathrm{~g}(43 \%) ; \mathrm{mp} 186-187^{\circ} \mathrm{C}$ (from hexane); IR 1730 (ester), 1710 (ketone), 1575 , and $1600 \mathrm{~cm}^{-1}$ (Ar ring); ${ }^{1} \mathrm{H}$ NMR $\delta 7.73$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 3.85$ (dd, $J=7.6$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17$), 3.66 and 3.65 (each $\mathrm{s}, 1.5 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$ for the R and S epimers at C-17), $3.55-2.97(\mathrm{~m}, 6 \mathrm{H}, 2$ $\times \mathrm{CH}_{2} \mathrm{CS}+\mathrm{H}-7 \alpha, \beta$), 2.86 and 2.84 (two dd, $J=18.9$ and 7.6 Hz , $1 \mathrm{H}, \mathrm{H}-16$ of R, S epimers at $\mathrm{C}-17$), 2.63 (dd, $J=18.9$ and 2.5 Hz , $1 \mathrm{H}, \mathrm{H}-16$), 1.59 and 1.58 (each $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CS}_{2}$ of R, S epimers at $\mathrm{C}-17$), 1.25 and 1.20 (each s, $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$) [irradiation at δ 3.85 caused the doublets of doublets at $\delta 2.86$ and 2.63 to collapse to doublets $(J=18.9 \mathrm{~Hz})$]; ${ }^{13} \mathrm{C}$ NMR $\delta 206.03$ (C), 178.83 (C), 152.97 (C), 150.13 and 149.99 (C), 136.13 (C), 134.99 (C), 130.21 and $130.05(\mathrm{CH}), 124.65(\mathrm{CH}), 70.55(\mathrm{C}), 51.98\left(\mathrm{CH}_{3}\right), 49.90(\mathrm{CH})$, $47.53(\mathrm{C}), 44.75\left(\mathrm{CH}_{2}\right), 44.31$ and $44.20(\mathrm{CH}), 40.25\left(\mathrm{CH}_{2}\right), 39.72$ $\left(\mathrm{CH}_{2}\right), 38.29$ and $38.20\left(\mathrm{CH}_{2}\right), 37.39(\mathrm{C}), 36.41\left(\mathrm{CH}_{2}\right), 29.80$ and $29.68\left(\mathrm{CH}_{3}\right), 27.17$ and $26.88\left(\mathrm{CH}_{2}\right), 25.04\left(\mathrm{CH}_{3}\right), 20.88\left(\mathrm{CH}_{2}\right), 18.50$ $\left(\mathrm{CH}_{2}\right)$, and $16.43\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}, m / e$ (relative intensity) $446(0.26$, $\left.\mathrm{M}^{+}+2\right), 445\left(0.6, \mathrm{M}^{+}+1\right), 444\left(0.7, \mathrm{M}^{+}\right), 385(0.8), 326(1.7), 325$ (0.4), 121 (16.2), 120 (10.1), and 119 (100). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~S}_{2}: \mathrm{C}, 67.53 ; \mathrm{H}, 7.25$. Found: $\mathrm{C}, 67.21 ; \mathrm{H}, 7.30$

8: $0.069 \mathrm{~g}(24 \%)$; IR 1730 (ester) and $1700 \mathrm{~cm}^{-1}$ (ketone); ${ }^{1} \mathrm{H}$ NMR $\delta 7.64$ and 7.61 (each s, $2 \mathrm{H}, \mathrm{H}-11$ and $\mathrm{H}-14$), 3.85 (dd, J $=7.6$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17$), 3.67 and 3.65 (each s, $1.5 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$ of R, S epimers , $3.52-3.20\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{~S}\right), 3.11-2.96(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{H}-7 \alpha, \beta$), 2.88 (dd, $J=19.1$ and $7.6 \mathrm{~Hz}, \mathrm{H}-16$), 2.66 (dd, $J=$ 19.1 and $2.7 \mathrm{~Hz}, \mathrm{H}-16$), 1.59 and 1.54 (each s, $1.5 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CS}_{2}$ of R, S epimers), 1.27 and 1.19 (each s, $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR δ 205.03 (C), 178.84 (C), 151.20 (C), 150.67 (C), 143.00 (C), 136.16 $(\mathrm{C}), 127.77(\mathrm{CH}), 119.37$ and $119.10(\mathrm{CH}), 70.43(\mathrm{C}), 51.98\left(\mathrm{CH}_{3}\right)$, $50.48(\mathrm{CH}), 47.45(\mathrm{C}), 44.38(\mathrm{CH}), 44.16\left(\mathrm{CH}_{2}\right), 40.23\left(\mathrm{CH}_{2}\right), 39.73$ $\left(\mathrm{CH}_{2}\right), 37.90\left(\mathrm{CH}_{2}\right), 37.45(\mathrm{C}), 36.61\left(\mathrm{CH}_{2}\right), 30.79$ and $30.72\left(\mathrm{CH}_{2}\right)$, 29.68 and $29.44\left(\mathrm{CH}_{3}\right), 25.02\left(\mathrm{CH}_{3}\right), 21.25\left(\mathrm{CH}_{2}\right), 18.36\left(\mathrm{CH}_{2}\right), 16.50$
$\left(\mathrm{CH}_{3}\right)$; MS, $m / e 444\left(0.2, \mathrm{M}^{+}\right), 385(0.4), 326(1.2), 325(0.4), 121$ (26.3), 120 (15.9) and 119 (100). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, $67.53 ; \mathrm{H}, 7.25$. Found: C, 66.98; H, 7.32 .
4α-Carbomethoxy-4 β-methyl-18-nor-5 α-pregna-8,11,13-triene-15,20-dione (9). (a) From Pure 7. To a solution of 7 $(0.101 \mathrm{~g}, 0.227 \mathrm{mmol})$ in 4.8 mL of MeOH and 1.2 mL of THF was added a solution of $\mathrm{Tl}\left(\mathrm{NO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.252 \mathrm{~g}, 0.567 \mathrm{mmol}, 2.5$ equiv) in 1.2 mL of MeOH . The resulting solution was stirred at room temperature for 15 min , the white crystalline precipitate was filtered off and the filtrate was evaporated to leave a solid residue, which was extracted with chloroform. The extract was washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the dried solution gave a solid, which was purified by flash chromatography with hexane-ethyl acetate (8:2) as eluent to give the diketone $9\left(0.067 \mathrm{~g}, 80 \%\right.$) as a solid: $\mathrm{mp} 182-186^{\circ} \mathrm{C}$ (from methanol); IR 1720 (ester), 1710 and 1695 (ketone), 1575 and 1600 cm^{-1} (Ar ring); ${ }^{1} \mathrm{H} \mathrm{NMR}, \delta 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 7.26$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 4.20 (br t, $J 5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17$), 3.63 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.40 (dd, $J=6.7$ and $19.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \beta$), $3.15-2.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7 \alpha$), 2.81 (deformed d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-16 \alpha, \beta$), 2.22 and 2.17 (each $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$ of R, S epimers at $\mathrm{C}-17$), 1.25 and 1.19 (each s, $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$) [irradiation at $\delta 4.20$ collapsed the signal at $\delta 2.81$ to a singlet and irradiation at $\delta 1.65$ collapsed the doublet of doublets at $\delta 3.40$ to a doublet ($J=19.2$ Hz) and the multiplet at $\delta 3.15-2.90$ to a deformed doublet (J $=19.3 \mathrm{~Hz})] ;{ }^{13} \mathrm{C}$ NMR $\delta 206.21$ (C), 204.87 (C), 178.69 (C), 150.56 and 150.44 (C), 149.96 and 149.91 (C), 137.16 (C), 133.90 (C), 131.17 and $131.11(\mathrm{CH}), 123.36(\mathrm{CH}), 51.96\left(\mathrm{CH}_{3}\right), 51.12$ and $50.98(\mathrm{CH})$, $47.45(\mathrm{C}), 44.23$ and $44.04(\mathrm{CH}), 40.08\left(\mathrm{CH}_{2}\right), 38.26$ and 38.12 $\left(\mathrm{CH}_{2}\right), 37.44(\mathrm{C}), 36.34\left(\mathrm{CH}_{2}\right), 28.01$ and $27.62\left(\mathrm{CH}_{3}\right), 26.95$ and $26.78\left(\mathrm{CH}_{2}\right), 25.00\left(\mathrm{CH}_{3}\right), 20.73\left(\mathrm{CH}_{2}\right), 18.42\left(\mathrm{CH}_{2}\right)$ and 16.39 $\left(\mathrm{CH}_{3}\right)$; MS, m / e (relative intensity) $369\left(\mathrm{M}^{+}+1,19.4\right), 368\left(\mathrm{M}^{+}\right.$, $72.5), 326(26.5), 325(19.8), 293$ (62.5), 265 (32.0), and 43 (100); HRMS, calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4} 368.1987$, found 368.1991. Anal. Calcd: $\mathrm{C}, 74.97 ; \mathrm{H}, 7.66$. Found: C, 74.62; H, 7.46.
(b) From the Crude Cyclization Reaction Mixture. The crude reaction mixture obtained from cyclization reaction of 6 $(0.150 \mathrm{~g})$ was treated with $\mathrm{Tl}\left(\mathrm{NO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ as described for pure 7. Purification by flash chromatography with hexane-ethyl acetate ($8: 2$) as eluent gave $9(0.046 \mathrm{~g}, 38.5 \%$ from 5 b) and $10(0.025 \mathrm{~g}$, 21% from 5b). 10: IR $1690-1740$ (strong br band of ester and ketone), 1610 and $1575 \mathrm{~cm}^{-1}$ (Ar ring); ${ }^{1} \mathrm{H}$ NMR $\delta 7.68$ (s, 1 H , $\mathrm{H}-11$), 7.18 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-14$), 4.22 (m, $1 \mathrm{H}, \mathrm{H}-17$), 3.65 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), $2.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \alpha, \beta), 2.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-16 \alpha, \beta), 2.22$ and 2.18 (each $\mathrm{s}, 1.5 \mathrm{H}, \mathrm{COCH}_{3}$ of R, S isomers at $\mathrm{C}-17$), 1.26 and 1.17 (each s, $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\delta 206.00(\mathrm{C}), 203.95(\mathrm{C}), 178.74$ (C), 151.13 and $151.03(\mathrm{C}), 148.15(\mathrm{C}), 144.21$ and $144.15(\mathrm{C}), 134.51$ $(\mathrm{C}), 126.54(\mathrm{CH}), 120.19$ and $120.13(\mathrm{CH}), 51.99\left(\mathrm{CH}_{3}\right), 51.51$ and $51.37(\mathrm{CH}), 47.40(\mathrm{C}), 44.42$ and $44.22(\mathrm{CH}), 39.60\left(\mathrm{CH}_{2}\right), 38.01$ and $37.91\left(\mathrm{CH}_{2}\right), 37.52(\mathrm{C}), 36.55\left(\mathrm{CH}_{2}\right), 30.62$ and $30.54\left(\mathrm{CH}_{2}\right)$, 28.06 and $27.71\left(\mathrm{CH}_{3}\right), 25.00\left(\mathrm{CH}_{3}\right), 21.10\left(\mathrm{CH}_{2}\right), 18.32\left(\mathrm{CH}_{2}\right)$, and $16.48\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}, m / e$ (relative intensity) $369\left(\mathrm{M}^{+}+1,7.7\right), 368$ $\left(\mathrm{M}^{+}, 31.1\right), 341$ (15.6), 340 (9.8), 341 (15.6), 326 (54.3), 293 (33.4), 265 (24.2), and 43 (100); HRMS, calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4}$ 368.1987, found 368.1982 .

4 α-Carbomethoxy-4 β-methyl-18-nor-5 α-pregna-8,11,13-trien-20-one (13). A mixture of diketone $9(0.065 \mathrm{~g}, 0.176 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(0.065 \mathrm{~g})$ in $\mathrm{AcOH}(5 \mathrm{~mL})$ was shaken at room temperature under and H_{2} atmosphere overnight. After removal of the catalyst by filtration through a pad of silica gel the filtrate was concentrated in vacuo. The residual oil was dissolved in acetone (6 mL) and was treated at $0^{\circ} \mathrm{C}$ with a few drops of the Jones reagent. The mixture was poured into water and was extracted with ether. The organic phase was washed with 5% NaHCO_{3} solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The oily residue was purified by flash chromatography (hexane-ether, $1: 1$, as eluent) to give an epimeric mixture of $13 \mathbf{a}$ and $13 \mathbf{b}(0.050 \mathrm{~g}$, 80%) as an oil. Both isomers (30 mg of above mixture) were separated by preparative HPLC on a μ-Porasil column in 6-8-mg portions, with hexane-ethyl acetate ($95: 5$) as eluent, to give pure $17 \alpha \mathrm{H}$-isomer $13 \mathrm{a}(14 \mathrm{mg}$) and $17 \beta \mathrm{H}$-isomer $13 \mathrm{~b}(13 \mathrm{mg})$.

13a: mp 129-131 ${ }^{\circ} \mathrm{C}$ (from hexane); $[\alpha]^{24} \mathrm{D}+5.7^{\circ}$ (c $0.24, \mathrm{CHCl}_{3}$); IR 1717 (ester) and $1707 \mathrm{~cm}^{-1}$ (ketone); ${ }^{1} \mathrm{H}$ NMR $\delta 7.08$ (AB q,
$J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12$ and $\mathrm{H}-11$), 4.04 (dd, $J=5.9$ and 7.9 Hz , $1 \mathrm{H}, \mathrm{H}-17 \alpha$), 3.64 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 2.97-2.60 (m, $4 \mathrm{H}, \mathrm{H}-15 \alpha, \beta$ and $\mathrm{H}-7 \alpha, \beta), 2.40-2.20(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-16 \alpha, \beta, \mathrm{H}-5 \alpha$, and $\mathrm{H}-1 \beta), 2.17$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.26\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 1.19\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right)$ [the signal at $\delta 4.04$ collapsed to a singlet when irradiated at $\delta 2.31$]; ${ }^{13} \mathrm{C}$ NMR $\delta 209.17$ (C), 179.07 (C), 148.83 (C), 143.14 (C), 137.44 $(\mathrm{C}), 131.64(\mathrm{C}), 122.90(\mathrm{CH}), 121.95(\mathrm{CH}), 58.77(\mathrm{CH}), 51.89\left(\mathrm{CH}_{3}\right)$, $47.63(\mathrm{C}), 44.53(\mathrm{CH}), 38.30\left(\mathrm{CH}_{2}\right), 37.14(\mathrm{C}), 36.60\left(\mathrm{CH}_{2}\right), 30.44$ $\left(\mathrm{CH}_{2}\right), 28.04\left(\mathrm{CH}_{2}\right), 27.80\left(\mathrm{CH}_{2}\right), 27.80\left(\mathrm{CH}_{3}\right), 25.10\left(\mathrm{CH}_{3}\right), 21.36$ $\left(\mathrm{CH}_{2}\right), 18.55\left(\mathrm{CH}_{2}\right)$, and $16.46\left(\mathrm{CH}_{3}\right)$.

13b: $\mathrm{mp} 143-145^{\circ} \mathrm{C}$ (from hexane); $[\alpha]^{24} \mathrm{D}+73.7^{\circ}$ (c 0.24, CHCl_{3}); IR 1721 (ester) and $1700 \mathrm{~cm}^{-1}$ (ketone); ${ }^{1} \mathrm{H}$ NMR $\delta 7.07$ $(\mathrm{AB} \mathrm{q}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12$ and $\mathrm{H}-11), 4.05(\mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{H}-17 \beta)$, $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.90-2.63(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-15 \alpha, \beta$ and $\mathrm{H}-7 \alpha, \beta)$, 2.38-2.17 (m, $4 \mathrm{H}, \mathrm{H}-16 \alpha, \beta, \mathrm{H}-5 \alpha$, and $\mathrm{H}-1 \beta), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$, $1.26\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 1.19\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 209.17(\mathrm{C})$, 179.06 (C), 148.93 (C), 143.16 (C), 137.52 (C), 131.68 (C), 122.99 $(\mathrm{CH}), 121.97(\mathrm{CH}), 58.93(\mathrm{CH}), 51.92\left(\mathrm{CH}_{3}\right), 47.65(\mathrm{C}), 44.43(\mathrm{CH})$, $38.17\left(\mathrm{CH}_{2}\right), 37.14(\mathrm{C}), 36.59\left(\mathrm{CH}_{2}\right), 30.48\left(\mathrm{CH}_{2}\right), 28.11\left(\mathrm{CH}_{2}\right), 27.74$ $\left(\mathrm{CH}_{2}\right), 27.58\left(\mathrm{CH}_{3}\right), 25.22\left(\mathrm{CH}_{3}\right), 21.36\left(\mathrm{CH}_{2}\right), 18.56\left(\mathrm{CH}_{2}\right)$, and $16.48\left(\mathrm{CH}_{3}\right)$.

Both isomers showed MS, m / e (relative intensity) $355\left(\mathrm{M}^{+}+\right.$ $1,0.5), 354\left(\mathrm{M}^{+}, 1.8\right), 326(1.2), 311(22.3), 285(10.9)$, and $43(100)$; HRMS, calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3} 354.2195$, found 354.2201.

Preparation of Methyl Abieta-8,11,13,15-tetraen-18-oate (2) from the Oxidation-Pyrolysis Products of Methyl Dehydroabietate (1b). A mixture of methyl 13-acyl-7-oxo-podocarpa-8,11,13-trien-18-oate and methyl 7 -oxoabieta-$8,11,13,15$-tetraen-18-oate was prepared from methyl dehydroabietate 1 b by the modified procedure of Sanderson. ${ }^{4 b}$ The mixture was purified by flash chromatography with hexane-ethyl acetate ($1: 1$) as eluent to give methyl 7 -oxoabieta- $8,11,13,15$ -tetraen-18-oate (30% from 1 b) : $\mathrm{mp} 83-85^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (lit. ${ }^{4 \mathrm{~b}} \mathrm{mp} 83-84^{\circ} \mathrm{C}$).

A solution of the above ketone $(0.212 \mathrm{~g}, 0.65 \mathrm{mmol})$, potassium hydroxide ($0.44 \mathrm{~g}, 7.84 \mathrm{mmol}$), and 80% hydrazine hydrate $(0.36$ $\mathrm{mL}, 7.40 \mathrm{mmol}$) in diethylene glycol (4.9 mL) was heated at 110 ${ }^{\circ} \mathrm{C}$ for 2 h and then at $210^{\circ} \mathrm{C}$ for 2 h . After addition of more potassium hydroxide (0.3 g) the solution was heated for 1 h at the same temperature. The cooled reaction mixture was poured into cold water, acidified with dilute hydrochloric acid, and extracted with ether. The organic layer was washed with brine followed by drying and removal of the solvent to afford a yellowish oil, which was esterified with diazomethane. Chromatography (hexane-ether 9:1) gave methyl abieta-8,11,13,15-tetraen-18-oate (2) $(0.185 \mathrm{~g}, 91 \%)$ as a solid: $\mathrm{mp} 74-75^{\circ} \mathrm{C}$ (from methanol); $[\alpha]^{25} \mathrm{D}$ $+64\left(c 0.28, \mathrm{CHCl}_{3}\right)$; IR 1725 (ester), 1630 (olefine) and $1500 \mathrm{~cm}^{-1}$ (Ar ring); ${ }^{1} \mathrm{H}$ NMR $\delta 7.23-7.12$ (m, $3 \mathrm{H}, \mathrm{Ar}$ protons), 5.30 and 5.01 (each br s, $1 \mathrm{H}, 2 \times \mathrm{CH}=$), $3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.93-2.85(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H} 7 \alpha, \beta), 2.11$ (s, $3 \mathrm{H},=\mathrm{CCH}_{3}$), 1.27 and 1.20 (each s, 3 H , $2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\delta 178.90(\mathrm{C}), 148.73(\mathrm{C}), 142.89(\mathrm{C}), 138.20$ $(\mathrm{C}), 134.62(\mathrm{C}), 125.99(\mathrm{CH}), 124.02(\mathrm{CH}), 122.95(\mathrm{CH}), 111.52$ $\left(\mathrm{CH}_{2}\right), 51.81\left(\mathrm{CH}_{3}\right), 47.54(\mathrm{C}), 44.74(\mathrm{CH}), 37.85\left(\mathrm{CH}_{2}\right), 37.00(\mathrm{C})$, $36.56\left(\mathrm{CH}_{2}\right), 29.96\left(\mathrm{CH}_{2}\right), 24.89\left(\mathrm{CH}_{3}\right), 21.68\left(\mathrm{CH}_{3}\right), 21.59\left(\mathrm{CH}_{2}\right)$, $18.47\left(\mathrm{CH}_{2}\right)$, and $16.44\left(\mathrm{CH}_{3}\right)$.

Acknowledgment. Financial support from CAICYT (Grant 2071/83 is gratefully acknowledged. We also thank Dr. D. Craig for manuscript revision.

Registry No. 1a, 1740-19-8; 1b, 1235-74-1; 2, 22465-60-7; 3, 53655-52-0; 4a (isomer 1), 114958-33-7; 4a (isomer 2), 114958-34-8; 5 (isomer 1), 114958-35-9; 5 (isomer 2), 114958-36-0; 6 (isomer 1), 114958-37-1; 6 (isomer 2), 114958-38-2; 7 (isomer 1), 114978-20-0; 7 (isomer 2), 115015-36-6; 8 (isomer 1), 114958-39-3; 8 (isomer 2), 115015-37-7; 9 (isomer 1), 114958-40-6; 9 (isomer 2), 115015-38-8; 11 (isomer 1), 114958-41-7; 11 (isomer 2), 115015-39-9; 12 (isomer 1), 114958-42-8; 12 (isomer 2), 115015-40-2; 13a, 114958-43-9; 13b, 115015-41-3; DDQ, 84-58-2; 4α-carbomethoxy-20-hydroxy-4 β -methyl-18-nor- 5α-pregna-8,11,13-triene, 114958-44-0; 4α-carbo-methoxy-20-hydroxy-4 β-methyl-18-nor-5 $\alpha, 17 \alpha$-pregna-8,11,13triene, 115015-42-4; methyl 7-oxoabieta-8,11,13,15-tetraen-18-oate, 17751-36-9.

[^0]: (1) Volpe, T.; Revial, G.; Pfau, M.; d'Angelo, J.; Chatterjee, S. K.; Raychavdhuri, S. R.; Chatterjee, A. Tetrahedron Lett. 1987, 28, 2367. Indian J. Chem. Sect. B 1985, 25B, 1200. Berrier, C.; Gesson, J. P.; Jacquesy, J. C.; Renoux, A. Tetrahedron 1984, 40, 4973.
 (2) Steindl, H.; Haslinger, E. J. Org. Chem. 1985, 50, 3749 and references cited therein.
 (3) Burden, P. M.; Cheung, H. T. A.; Watson, T. R.; Ferguson, G.; Seymour, P. F. J. Chem. Soc., Perkin Trans. 1 1987, 169 and references cited therein. Thomson, R.H. The Chemistry of Natural Products; Blackie and Son, Ltd, London, 1985; p 208.

[^1]: (4) (a) Settine, R. L.; Gawish, A. A. J. Org. Chem. 1983, 48, 2309. (b) Tahara, A.; Shimagaki, M.; Itoh, M.; Yoshiroto, H.; Masayuki, O. Chem. Pharm. Bull. 1975, 23, 3189.
 (5) (a) Burgstahler, A. W.; Worden, L. R. J. Am. Chem. Soc. 1964, 86, 96. Erdtman, H.; Malmborg Acta Chem. Scand. 1970, 24, 2252. (b) Tolstikov, G. A.; Irismetov, M. P.; Goryaev, M. I. Chem. Abstr. 1968, 68, 78446 y . Goryaev, M. I.; Sharipova, F. S.; TikhonovaL, K.; Elchibekova, L. A. Chem. Abstr. 1972, 76, 153963k. Huffman, J. W.; Stockel, R. F. J. Org. Chem. 1963, 28, 506. (c) Wenkert, E. Can. J. Chem. 1963, 41, 1924. (d) Sircar, J. C.; Fisher, G. S. J. Org. Chem. 1970, 35, 3090.

[^2]: (6) Compound 2 and methyl abieta-6,8,11,13-tetraen-18-oate were prepared through independent routes to be used as reference compounds in the GC analysis. The former was prepared from methyl dehydroabietate (1 b) as described at the end of the Experimental Section and the latter from methyl abietate as described in: Dupont, G.; Dulou, R.; Ourisson, G.; Thibault, C. Bull. Soc. Chem. Fr. 1955, 708.
 (7) McKillop, A.; Swann, B. P.; Taylor, E. C. J. Am. Chem. Soc. 1971, 93, 4913.
 (8) Negishi, E.; Idacavage, M. J. Tetrahedron Lett. 1979, 20, 845.
 (9) From the complex reaction mixtures obtained the γ-lactone derived from lactonization through the enolic form of the 2^{\prime}-carbonyl group was the only identifiable product.

[^3]: (10) Tahara, A.; Shimagaki, M.; Itoh, M.; Yoshiroto, H.; Masayuki, O. Chem. Lett. 1974, 651.
 (11) Kabalka, G. W.; Baker, J. D., Jr. J. Org. Chem. 1975, 40, 1834.
 (12) The instability of all tetracyclic products obtained in this work was a continuous problem in their handling. All of them were changed when left standing at room temperature, giving extensive decomposition, and a striking sensitivity to the acid medium was shown by some of them (e.g., incomplete elimination of acid during workup of the cyclization reaction produced extensive decomposition of the cyclized products, most of the products formed being apparently polymeric). Only solid tetracyclic compounds were stable for long periods of time, if kept in the refrigerator under argon.
 (13) Since separation of cyclized products 7 and 8 proved to be difficult we found it more convenient to deprotect the crude mixture from the cyclization reaction and to separate the deprotected cyclized products 9 and 10. A better yield of diketone 9 was obtained in this way (see Experimental Section).
 (14) Burden, P. M.; Cheung, H. T. A.; Ai, T. H.; Watson, T. R. J. Chem. Soc., Perkin Trans. 1 1983, 2669.

[^4]: (15) This conformation has been found for other C-aryl-18-norsteroids and closely related molecules. See ref 3 and Ferguson, G.; Parvez, M.; Watson, R. T.; Cheung, H. T. A. J. Chem. Res. Synop. 1983, 278; J. Chem. Res. Miniprint 1983, 2539.
 (16) Halbrook, N. J.; Lawrence, R. V. J. Org. Chem. 1966, 31, 4246.
 (17) Abad, A.; Arno, M.; Domingo, L. R.; Zaragoza, R. J. Tetrahedron 1985, 41, 4937.

